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1. Introduction

Consider the optimization problem

minimize f(x, y)

subject to

y ∈ S(x) (1)

x ∈ ω

y ∈ Ξ,

where x ∈ R
n is the control, y ∈ R

m is the state variable, f [Rn × R
m → R] is

a locally Lipschitz objective, ω ⊂ R
n and Ξ ⊂ R

m are nonempty closed sets of
admissible controls and states, respectively, and S[Rn

⇉ R
m] is a closed-graph

multifunction. This multifunction represents in (1) the so-called equilibrium
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constraint and is usually defined by a control-dependent variational inequal-
ity in variable y. Problems of the type (1) are called mathematical programs
with equilibrium constraints (MPECs) and for S we use the term solution map.
MPECs have have been investigated in the monographs of Luo, Pang and Ralph
(1996), Outrata, Kočvara and Zowe (1998), Dempe (2002) and in numerous pa-
pers. In Ye and Ye (1997), Outrata (1999, 2000), Ye (2000) and some other
papers the authors used the Mordukhovich theory of generalized differentiation
(Mordukhovich, 1988, 2006) to derive efficient optimality conditions for (1).
Optimality conditions for an infinite-dimensional version of (1) can be found,
e.g., in Mordukhovich (2006), Chapter 5. In the approach applied in these
works neither the multi-valuedness of the solution map S nor the presence of
geometric constraints x ∈ ω, y ∈ Ξ cause substantial difficulties. One has to
impose, however, specific constraint qualifications requiring either the Aubin
property or calmness of special multifunctions, reflecting the structure of the
overall constraint system.

In numerous important MPECs coming, e.g., from continuum mechanics,
the solution map S is (at least locally) single-valued and locally Lipschitz, see
Outrata, Kočvara and Zowe (1998). In this case, in agreement with Luo, Pang
and Ralph (1996), we will say that the so-called implicit programming hypoth-
esis (ImP-hypothesis) is fulfilled. Problem (1) becomes then a special optimal
control problem, where S specifies the behavior of the controlled system. The
ImP-hypothesis enables us to apply to the derivation of optimality conditions
and to the numerical solution of (1) various techniques of the so-called ImP-
approach, based essentially on the implicit function argument, see Luo, Pang
and Ralph (1996), Outrata, Kočvara and Zowe (1998). They are particularly
efficient in the absence of state constraints.

The aim of this paper is to analyze the impact of the ImP-hypothesis on the
optimality conditions and to examine exact penalization of state constraints in
the framework of a standard ImP numerical technique. Notice that besides the
mechanical equilibria, mentioned above (where the ImP-hypothesis can be ver-
ified directly), the ImP-hypothesis is usually ensured by the Robinson’s strong
regularity or the strong second order sufficient condition, see Robinson (1980).

The plan is as follows. In Section 2 we first show that ImP-hypothesis
has a positive influence only on the imposed constraint qualification and not
on the stationarity condition itself. Then we replace the abstract equilibrium
constraint y ∈ S(x) by a parameterized variational inequality and ensure the
ImP-hypothesis by the Robinson’s strong regularity. In this setting, under some
additional assumptions, we are able to derive new, sharp optimality conditions.

In Section 3 we suggest to penalize the state constraints under appropriate
assumptions on S by the nonsmooth composition dΞ ◦ S, where dΞ denotes a
suitable distance function. We show that the exactness of this penalty can be
ensured by a constraint qualification, playing a crucial role already in optimal-
ity conditions. The behavior of the proposed method is tested by academic
examples.
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The following notation is employed. B denotes the unit ball, dΩ(·) is the
distance function to a set Ω and, for a closed cone D with vertex at the origin,

D◦ denotes its negative polar cone. By x
Ω
−→ x̄ we mean that x→ x̄ with x ∈ Ω.

TΩ(x) denotes the contingent (Bouligand-Severi) cone to Ω at x and PΩ(x) is
the metric projection of x onto the closure of Ω. For a real-valued function
f we use the notation epi f and ∂̄f(x) to denote its epigraph and the Clarke
subdifferential of f at x, see Clarke (1983), respectively. If f is vector-valued,
∂̄f(x) stands for the generalized Jacobian of Clarke at x.

For the readers’ convenience we state now the definitions of several basic
notions from modern variational analysis.

For a set Ω and a point x̄ ∈ clΩ, the Fréchet normal cone to Ω at x̄ is defined
by

N̂Ω(x̄) :=

{
x∗ ∈ R

n

∣∣∣∣∣ limsup

x
Ω
−→x̄

〈x∗, x− x̄〉

‖ x− x̄ ‖
≤ 0

}
.

The limiting normal cone to Ω at x̄ is given by

NΩ(x̄) = Lim sup

x
Ω
−→x̄

N̂Ω(x),

where the “Lim sup” stands for the Painlevé-Kuratowski upper (or outer) limit.
This limit is defined for a set-valued mapping F [Rn

⇉ R
m] at a point x̄ by

Lim sup
x→x̄

F (x) := {y ∈ R
m | ∃xk → x, ∃yk → y with yk ∈ F (xk)}.

For a convex set Ω, both normal cones NΩ and N̂Ω reduce to the normal cone
of convex analysis, for which we use simply the notation NΩ.

For a function f [Rn → R], and a point x̄ ∈ R
n, the set

∂f(x̄) = {y ∈ R
n | (y,−1) ∈ Nepif (x̄, f(x̄))}

is the limiting subdifferential of f at x̄.
Given a set-valued mapping F [Rn

⇉ R
m] and a point (x̄, ȳ) from its graph

GphF := {(x, y) ∈ R
n × R

m|y ∈ F (x)},

the Fréchet coderivative D̂∗F (x̄, ȳ)[Rm
⇉ R

n] of F at (x̄, ȳ) is defined by

D̂∗F (x̄, ȳ)(y∗) := {x∗ ∈ R
n|(x∗,−y∗) ∈ N̂GphF (x̄, ȳ)},

and the (limiting) coderivative D∗F (x̄, ȳ)[Rm
⇉ R

n] of F at (x̄, ȳ) is defined by

D∗F (x̄, ȳ)(y∗) := {x∗ ∈ R
n|(x∗,−y∗) ∈ NGphF (x̄, ȳ)}.

When F is single-valued at x̄, we omit ȳ in the notation D̂∗F (x̄, ȳ) or D∗F (x̄, ȳ).
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Finally, throughout the paper we use the notion of calmness. A set-valued
mapping F [Rn

⇉ R
m] is said to be calm at (x̄, ȳ) ∈ Gph F with modulus L ≥ 0

if there are neighborhoods U of x̄ and V of ȳ such that

F (x) ∩ V ⊂ F (x̄) + L‖x− x̄‖B for all x ∈ U .

2. Analysis of optimality conditions

Consider first the MPEC (1) without any additional assumptions. From Hen-
rion, Jourani and Outrata (2002), Theorem 4.1, we get readily the following
result.

Theorem 1 Let (x̂, ŷ) be a (local) solution of (1) and assume that the pertur-
bation map M [Rn × R

m
⇉ R

n × R
m], defined by

M(p1, p2) := {(x, y) ∈ GphS |x− p1 ∈ ω, y − p2 ∈ Ξ}, (2)

is calm at (0, 0, x̂, ŷ).
Then there is a subgradient (ξ, γ) ∈ ∂f(x̂, ŷ) and a normal vector η̂ ∈ NΞ(ŷ)

such that

0 ∈ ξ +D∗S(x̂, ŷ)(γ + η̂) +Nω(x̂). (3)

Proof. It suffices to put z := (x, y) and apply the mentioned result from Henrion,
Jourani and Outrata (2002) to the computation of an upper estimate of the
limiting normal cone NGphS∩(ω×Ξ) at ẑ = (x̂, ŷ). On the basis of Mordukhovich
(1988), Theorem 7.1, we arrive at the optimality condition

0 ∈ ∂f(ẑ) +NGphS(ẑ) +Nω×Ξ(ẑ),

which immediately implies (3).

The ImP-hypothesis amounts to the existence of neighborhoods P of x̂, Q
of ŷ and a Lipschitz function s[P → R

m] such that s(x̂) = ŷ and

S(x) ∩ Q = {s(x)} for all x ∈ P .

In agreement with Rockafellar and Wets (1998), s will be called a Lipschitz
localization of S around (x̂, ŷ). So, the ImP-hypothesis enables us to replace (1)
locally around (x̂, ŷ) by a nonlinear program in variable x only:

minimize θ(x)

subject to

x ∈ ω

s(x) ∈ Ξ,

(4)

where θ(x) := f(x, s(x)). This reformulation leads to the following statement.



On the implicit programming approach in a class of MPECs 1561

Theorem 2 Let the ImP-hypothesis be fulfilled around (x̂, ŷ), where x̂ is a (lo-

cal) solution of (4) and ŷ = s(x̂). Further, assume that the map M̃ [Rm
⇉ R

n]
defined by

M̃(q) := {x ∈ ω | s(x) − q ∈ Ξ} (5)

is calm at (0, x̂).
Then there is a subgradient (ξ, γ) ∈ ∂f(x̂, ŷ) and a normal vector ŵ ∈ NΞ(ŷ)

such that

0 ∈ ξ +D∗S(x̂, ŷ)(γ) +D∗S(x̂, ŷ)(ŵ) +Nω(x̂). (6)

Proof. Clearly, problem (4) amounts to

minimize θ(x)

subject to

x ∈ A,

(7)

where A := ω ∩ s−1(Ξ). By virtue of Mordukhovich (1988), Theorem 7.1, one
has

0 ∈ ∂θ(x̂) +NA(x̂).

From Rockafellar and Wets (1998), Theorem 10.49, we have the estimate

∂θ(x̂) ⊂
⋃{

ξ +D∗s(x̂)(γ)
∣∣∣ (ξ, γ) ∈ ∂f(x̂, ŷ)

}
,

and by Henrion, Jourani and Outrata (2002), Theorem 4.1, we infer that

NA(x̂) ⊂ Nω(x̂) +
⋃{

D∗s(x̂)(w)
∣∣∣w ∈ NΞ(S(x̂))

}
.

Since D∗s(x̂) amounts to D∗S(x̂, ŷ) by the definition of the coderivative, the
statement has been proved.

Remark 1 The ImP-hypothesis is in the literature traditionally formulated in
the form which we have adopted here. As pointed out by one of the reviewers,
however, it could be weakened by assuming merely the existence of a Hőlder
localization of S around a (local) solution. Since θ is then not necessarily Lip-
schitz, this would require imposing additionally the qualification condition

∂∞θ(x̂) ∩ (−NA(x̂)) = {0}

in Theorem 2, where for the singular subdifferential ∂∞θ(x̂) we have the estimate

∂∞θ(x̂) ⊂ D∗s(x̂)(0),

at our disposal, see Mordukhovich (2006), Theorem 3.38 (iv). Further, one could
not directly apply bundle methods in the associated numerical approach discussed
in Section 3. Nevertheless, such a weakened ImP-hypothesis still brings a lot of
structure into the problem and definitely deserves a careful analysis.
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Under the ImP-hypothesis we are entitled to compare the statements of
Theorems 1 and 2.

Proposition 1 Let the ImP-hypothesis hold true around the point (x̂, ŷ) which
fulfills condition (3). Then (x̂, ŷ) satisfies condition (6) as well.

Proof. Let c ∈ D∗S(x̂, ŷ)(a + b) = D∗s(x̂)(a + b) for some arbitrary vectors

a, b ∈ R
m. Assume, by contradiction, that for any x

(i)
1 → x̂, a(i) → a, c

(i)
1 ∈

D̂∗s(x
(i)
1 )(a(i)) and for any x

(i)
2 → x̂, b(i) → b, c

(i)
2 ∈ D̂∗s(x

(i)
2 )(b(i)) one has that

c
(i)
1 + c

(i)
2 does not converge to c. This holds of course even more if we require

x
(i)
1 = x

(i)
2 ∀i. Then, however, by convexity of the regular normal cone one has

c
(i)
1 + c

(i)
2 ∈ D̂∗s(x

(i)
1 )(a(i) + b(i)),

which contradicts the relation c ∈ D∗s(x̂)(a+ b) and we are done.

The reverse inclusion, however, does not hold as shown in the next example.

Example 1 Suppose that S(x) = s(x) = −|x|, (x̂, ŷ) = (0, 0) and γ = η̂ = 1.
Then

0 ∈ D∗S(x̂)(γ) +D∗S(x̂)(η̂),

while

0 /∈ D∗S(x̂)(γ + η̂).

It follows that condition (3) is not less sharp (selective) than (6). Moreover,
(3) is definitely more workable, because only one value of D∗S(x̂, ŷ) has to be
computed. Next we compare the calmness qualification conditions related to
the multifunctions (2) and (5).

Proposition 2 Let the ImP-hypothesis be fulfilled around (x̂, ŷ). Then the fol-
lowing two properties are equivalent.

(i) M is calm at (0, 0, x̂, ŷ);

(ii) M̃ is calm at (0, x̂).

Proof. (i) ⇒ (ii)
Clearly, the calmness of M at (0, 0, x̂, ŷ) is equivalent to the calmness of the
(localized) multifunction M ℓ given by

M ℓ(p1, p2) = {(x, y) ∈ Gphs |x− p1 ∈ ω, y − p2 ∈ Ξ}

at the same point (one just has to appropriately shrink the neighborhoods U ,V
in the definition of calmness). Evidently,

M ℓ(p1, p2) = {(x, y) ∈ Gphs |x ∈M1(p1, p2)},
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where

M1(p1, p2) := {x |x− p1 ∈ ω, s(x) − p2 ∈ Ξ}.

Since s is single-valued and Lipschitz, the calmness of M ℓ at (0, 0, x̂, ŷ) is equiv-
alent to the calmness of M1 at (0, 0, x̂). Finally, it is clear that the calmness of

M1 at (0, 0, x̂) implies the calmness of M̃ at (0, x̂), and we are done.

(ii) ⇒ (i)
Taking into account the above mentioned equivalences, assume by contradiction
the existence of sequences

x(i) → x̂, (p
(i)
1 , p

(i)
2 ) → (0, 0) with x(i) ∈M1(p

(i)
1 , p

(i)
2 )

such that

dM1(0,0)(x
(i)) ≥ i(‖p

(i)
1 ‖ + ‖p

(i)
2 ‖) ∀ i.

Put x̃(i) := x(i) − p
(i)
1 and observe that, due to

s(x(i)) − s(x̃(i)) + s(x̃(i)) − p
(i)
2 ∈ Ξ,

one has s(x̃(i)) − q(i) ∈ Ξ with q(i) = s(x̃(i)) − s(x(i)) + p
(i)
2 . By the Lipschitz

continuity of s

‖q(i)‖ ≤ ℓ‖x̃(i)−x(i)‖+‖p
(i)
2 ‖ = ℓ‖p

(i)
1 ‖+‖p

(i)
2 ‖ ≤ max{ℓ, 1}(‖p

(i)
1 ‖+‖p

(i)
2 ‖),

where ℓ is the Lipschitz constant of s. It follows that

d
M̃(0)

(x̃(i)) ≥ dM1(0,0)(x
(i))−‖p

(i)
1 ‖ ≥ (i−1)(‖p

(i)
1 ‖+‖p

(i)
2 ‖) ≥

i− 1

max{ℓ, 1}
‖q(i)‖,

whence contradiction with the calmness of M̃ at (0, x̂). The result has been
established.

We conclude that the ImP-hypothesis does not enable us to sharpen the
optimality condition (3) itself, but instead of the calmness of M we can verify

the calmness of a simpler perturbation multifunction M̃ .
Condition (3) is clearly useful only in the case, when we are able to compute

the coderivative D∗S(x̂, ŷ) or its tight upper estimate. Then, of course, a cer-
tain structure of the equilibrium constraint has to be given. The coderivative
D∗S(x̂, ŷ) (or its upper estimate) can then be used also in some available calm-
ness criteria (Henrion and Outrata, 2001; Henrion, Jourani and Outrata, 2002;
Ioffe and Outrata, 2008).

Next, we will suppose that

S(x) := {y ∈ R
m | 0 ∈ F (x, y) +NΓ(y)}, (8)
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where Γ ⊂ R
m is a convex polyhedron and F [Rn × R

m → R
m] is continuously

differentiable. Moreover, at the (local) solution pair (x̂, ŷ) we will impose the
Robinson’s strong regularity condition (SRC) requiring the existence of neigh-
borhoods U of 0 ∈ R

m and V of ŷ such that the mapping

p 7→ {y ∈ V | p ∈ F (x̂, ŷ) + ∇yF (x̂, ŷ)(y − ŷ) +NΓ(y)}

is single-valued and Lipschitz on U . It is well known (Robinson, 1987, 1991)
that in this situation the ImP-hypothesis holds true. Further, the respective
Lipschitz localization s is directionally differentiable at x̂, which will be helpful
in the next development. We recall that for an arbitrary direction d ∈ R

n the
directional derivative s′(x̂; d) amounts to the (unique) solution v of the affine
generalized equation

0 ∈ ∇xF (x̂, ŷ)d+ ∇yF (x̂, ŷ)v +NK(x̂)(v), (9)

where K(x̂) := TΓ(ŷ) ∩ (F (x̂, ŷ))⊥ is the critical cone to Γ with respect to ŷ
and F (x̂, ŷ). Under the imposed assumptions we derive the following optimality
conditions.

Theorem 3 Consider the MPEC (1) with S given by (8). Assume that (x̂, ŷ)
is its (local) solution, and

(i) f is continuously differentiable,
(ii) Γ is a convex polyhedron,
(iii) Ξ = R

m (i.e. no state constraints), and
(iv) SRC holds at (x̂, ŷ).

Then there are multipliers û, b̂ with
(
û

b̂

)
∈ NGphNK(x̂)

(0, 0)

such that

0 ∈ ∇xf(x̂, ŷ) − (∇xF (x̂, ŷ))⊤b̂+Nω(x̂)

0 = ∇yf(x̂, ŷ) + û− (∇yF (x̂, ŷ))⊤b̂.
(10)

Proof. Denote by Λ the constraint set in the considered MPEC, i.e.,

Λ = GphS ∩ (ω × R
m).

By virtue of the directional differentiability of s it is easy to show that

TΛ(x̂, ŷ) = {(d, v) ∈ Tω(x̂) × R
m | v = s′(x̂; d)}.

It follows from the (local) optimality of (x̂, ŷ) that (0,0) is a solution of the
“linearized” MPEC

minimize 〈∇xf(x̂, ŷ), d〉 + 〈∇yf(x̂, ŷ), v〉

subject to

0 ∈ ∇xF (x̂, ŷ)d+ ∇yF (x̂, ŷ)v +NK(x̂)(v)

d ∈ Tω(x̂)

(11)
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in variables (d, v). Due to assumptions (ii) and (iv), the generalized equation
in (11) satisfies SRC at (0,0), see Outrata, Kočvara and Zowe (1998), Theorem
5.3. We can thus invoke Outrata (2000), Proposition 3.2, according to which
the classical MPEC constraint qualification

(
0 −(∇xF (x̂, ŷ))⊤

Id −(∇yF (x̂, ŷ))⊤

) (
u
b

)
∈ −NTω(x̂)(0) × {0}

(u, b) ∈ NGphNK(x̂)
(0, 0)





⇒

{
u = 0

b = 0

holds. This enables us now to apply Outrata (2000), Theorem 3.1, to the MPEC

(11), which yields the existence of multipliers (û, b̂) ∈ NGphNK(x̂)
(0, 0) such that

relations (10) hold with Nω(x̂) replaced by NTω(x̂)(0). It remains to observe
that by virtue of Rockafellar and Wets (1998), Theorem 6.27 (a),

NTω(x̂)(0) ⊂ Nω(x̂),

and so the statement has been established.

From the above proof it is clear that the statement holds even for nonpoly-
hedral sets Γ under the assumptions that, in addition to (i), (iii) and (iv),

• K(x̂) is a polyhedral cone;
• s is directionally differentiable at x̂ with

s′(x̂; d) = (G ◦ ∇xF (x̂, ŷ))(d),

where G is a single-valued map from R
m to R

m defined by

G(h) := {v ∈ R
m|0 ∈ h+ Z(x̂)v +NK(x̂)(v)}

and Z(x̂) is an m×m matrix.
The above assumptions enable us to apply Outrata (2000), Proposition 3.2 and
Theorem 3.1, exactly as in the fully polyhedral case. Indeed, from the single-
valuedness of G and the polyhedrality of K(x̂) it follows that the generalized
equation

0 ∈ ∇xF (x̂, ŷ)d+ Z(x̂)v +NK(x̂)(v)

satisfies SRC at (0, 0), because a single-valued polyhedral mapping is Lipschitz.
Such a situation appears, e.g., in Ralph and Dempe (1995), Corollary 4,

statement (2), or in Luo, Pang and Ralph (1996), Theorem 4.2.25, where

Γ = {y ∈ R
m|qi(y) ≤ 0, i = 1, . . . , l}

with qi[Rm → R], i = 1, . . . , l, convex and twice continuously differentiable.
Moreover, one requires that Mangasarian Fromowitz and constant rank con-
straint qualifications are fulfilled at the reference point. In such a case,

Z(x̂) = ∇yF (x̂, ŷ) +

l∑

i=1

λi∇2qi(ŷ),
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where λ ∈ R
l
+ is any Lagrange multiplier associated with (x̂, ŷ). The standard

optimality conditions as in Outrata (2000), Theorem 3.1, may be not too sharp
because we are able to compute only an upper estimate of NGphNΓ (according to
Mordukhovich and Outrata, 2007, Theorem 4.3). On the other hand, NGphNK(x̂)

can be computed exactly, see Dontchev and Rockafellar (1996), Henrion and
Roemisch (2007) and Henrion, Outrata and Surowiec (2009). We believe, how-
ever, that the conditions of Theorem 3 can be useful also for a polyhedral Γ
given by linearly dependent inequalities, provided we are able to express K(x̂)
in a suitable way. This is shown in the next example.

Example 2 Consider the MPEC

minimize − 2x1 −
x2

2
− y2

subject to

0 ∈ a+ x+ y +NΓ(y)

x1 ≤ 0,

(12)

where a = (1,−1)⊤ and Γ = {y ∈ R
2|y2 ≤ 0, y2 ≤ y1, y2 ≤ −y1}.

One can verify that the point, (x̂, ŷ) = (0, 0, 0, 0) is a solution of (12). More-
over, the generalized equation in (12) is strongly regular at (0, 0, 0, 0). Note that
at (0, 0) the active inequalities defining Γ are linearly dependent.

At (0, 0, 0, 0) we can compute the critical cone

K(x̂) = {(v1, v2) ∈ R
2| − v1 + v2 ≤ 0, v1 ≤ 0},

and the normal cone

NGphNK(x̂)
(0, 0) =

{
(u, b) ∈ R

2 × R
2 | b = 0}

⋃

{
(u, b) ∈ R

2 × R
2 |u1 = −u2, b1 = b2}

⋃

{
(u, b) ∈ R

2 × R
2 |u1 ≥ −u2, b1 = b2, b2 ≤ 0} ,

where we followed the approach from Dontchev and Rockafellar (1996), proof of
Theorem 2.

The conditions (10) reduce to

0 = −2 − b1 + ξ,

0 = −
1

2
− b2,

0 = u1 − b1,

0 = −1 + u2 − b2,

with (u, b) ∈ NGphNK(x̂)
(0, 0) and ξ ≥ 0. We observe that they are satisfied only

for the multipliers (u1, u2, b1, b2, ξ) = (− 1
2 ,

1
2 ,−

1
2 ,−

1
2 ,

3
2 ).
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3. Exact penalization under ImP-hypothesis

To simplify the formulations, let us replace throughout this whole section the
ImP-hypothesis by the stronger assumption that S is single-valued and locally
Lipschitz over ω.

The notion of calmness is closely linked to exact penalization in nonlinear
programming, see Clarke (1983), Proposition 6.4.3, Burke (1991) and Henrion
and Outrata (2001). Since f is locally Lipschitz, the exact penalization property

of dΞ ◦ S can be proved under the calmness of the multifunction M̃. For the
readers’ convenience we give here a short proof of this well-known statement.

Proposition 3 Let x̂ be a local solution of (4), let ℓ1 be a Lipschitz constant
of f around (x̂, S(x̂)) and ℓ2 be a Lipschitz constant of S around x̂. Further,

assume that the map M̃ , defined in (5) is calm at (0, x̂) with modulus L. Then,
for any R ≥ ℓ1(ℓ2 + 1)L the vector x̂ solves the penalized problem

minimize θ(x) +RdΞ(S(x̂))

subject to

x ∈ ω.

(13)

Proof. Recall that A = ω ∩ S−1(Ξ). Applying Clarke (1983), Proposition 2.4.3,

to (7), for any ℓ̂ ≥ ℓ1(ℓ2 + 1), the function

g(x) = θ(x) + ℓ̂dA(x)

attains a minimum at x̂.
From the definition of calmness of M̃ at (0, x̂) there is a neighborhood U of

x̂ and a modulus L ≥ 0 such that for all x ∈ U

dA(x) = d
M̃(0)(x) ≤ Ld

M̃−1(x)(0).

Clearly,

d
M̃−1(x)

(0) =

{
dS(x)−Ξ(0) = dΞ(S(x)) if x ∈ ω,

+∞ otherwise.

This finishes the proof.

Proposition 3 provides a lower bound for the penalty parameter R in relation
with the Lipschitz and calmness moduli. This lower bound can also be related
to the multipliers in the optimality conditions of Theorem 2.

To this end, let us rewrite the penalized problem (13) in the form

minimize θ(x) +R‖v‖

subject to

x ∈ ω

S(x) − v ∈ Ξ

(14)
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in variables x and v. Then, for the optimal solution (x̂, 0) of (14) we have from
Mordukhovich (1988), Theorem 7.1, that

0 ∈

(
∂θ(x̂)
RB

)
+N

Ã
(x̂, 0),

where Ã = (ω × R
m) ∩D with D = {(x, v)|S(x) − v ∈ Ξ}.

Since

ND(x̂, 0) =

(
D∗S(x̂)
−Id

)
NΞ(S(x̂))

by virtue of Rockafellar and Wets (1998), Corollary 10.50, the standard con-
straint qualification

Nω∩Rm(x̂, 0) ∩ (−ND(x̂, 0)) = {0}

for the intersection of sets holds true. Consequently,

N
Ã
(x̂, 0) ⊂

(
Nω(x̂)

0

)
+

(
D∗S(x̂)
−Id

)
NΞ(S(x̂)).

Hence, there is a multiplier w ∈ NΞ(S(x̂)) such that

0 ∈ ∂θ(x̂) +Nω(x̂) +D∗S(x̂)(w),

0 ∈ RB − w.
(15)

The first line of (15) clearly amounts to the condition (2.5), whereas the second
line of (15) provides us with the desired estimate

R ≥ ‖w‖.

For the numerical solution of (13) we can propose a variant of a classical
implicit programming technique. It has been developed in connection with the
Stackelberg problem in Outrata (1990) with the use of a standard bundle method
in nonsmooth optimization. In Outrata, Kočvara and Zowe (1998), this method
has been applied in combination with the classical Bundle-Trust region (BT)
algorithm from Schramm and Zowe (1992).

The main idea of BT is to construct an approximation of an objective ψ
based on the bundle information (ψ(xi), gi) for i ∈ Jk, where gi is an arbitrary
element from the Clarke subdifferential ∂̄ψ(xi) and Jk ⊂ {0, 1, . . . , k} is a set
which determines the part of bundle information used in the current iteration.

The key part in the successful application of the BT code to the penalized
problem (13) is the computation of a Clarke subgradient of the nonsmooth
function

θ̃(x) := θ(x) +RdΞ(S(x)) = (f +RdΞ) ◦

(
Id
S

)
(x) (16)

at the current iteration point x̄.
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For the sake of simplicity we will further assume that f is continuously
differentiable and that Ξ is convex. Then we distinguish the following three
cases:

i) S(x̄) /∈ Ξ.
Upon choosing d to be the Euclidean distance, d is a C1 function around
ȳ = S(x̄) and

∂̄θ̃(x̄) = ∂̄(f +RdΞ) ◦

(
Id
S

)
(x̄)

= ∇xf(x̄, ȳ) +

{
H⊤

(
∇yf(x̄, ȳ) +R

ȳ − PΞ(ȳ)

dΞ(ȳ)

)∣∣∣∣H ∈ ∂̄S(x̄)

}

⊃ ∇xf(x̄, ȳ) +D∗S(x̄)

(
∇yf(x̄, ȳ) +R

ȳ − PΞ(ȳ)

dΞ(ȳ)

)
,

where the second equality follows from Clarke (1983), Theorem 2.6.6, and
Rockafellar and Wets (1998), Example 8.53, and the inclusion follows from
Mordukhovich (1994), relation (2.23).

ii) S(x̄) ∈ intΞ.

Clearly, locally around x̄ the functions θ̃ and θ coincide and so

∂̄θ̃(x̄) = ∂̄θ(x̄) = ∇xf(x̄, ȳ) +
{
H⊤∇yf(x̄, ȳ)

∣∣H ∈ ∂̄S(x̄)
}

⊃ ∇xf(x̄, ȳ) +D∗S(x̄)(∇yf(x̄, ȳ)).

iii) S(x̄) ∈ bd Ξ.
In this case, the distance function is not differentiable and thus the com-
position in (16) involves two nonsmooth functions. This leaves us only
with the inclusions

∂̄θ̃(x̄) ⊂ ∇xf(x̄, ȳ)+
⋃{

D∗S(x̄)(∇yf(x̄, ȳ) +Rξ̄)
∣∣∣ ξ̄ ∈ NΞ(ȳ) ∩ B

}
(17)

and

∂̄θ̃(x̄) ⊃ ∂̂θ̃(x̄)

⊃ ∇xf(x̄, ȳ) +
⋃{

D̂∗S(x̄)(∇yf(x̄, ȳ) +Rξ̄)
∣∣∣ ξ̄ ∈ NΞ(ȳ) ∩ B

}
,

(18)

which follow from Rockafellar and Wets (1998), Corollary 10.9 and Theo-
rem 10.49.

The above formulas require an arbitrary value of D∗S(x̄)(·) or D̂∗S(x̄)(·)
evaluated at the appropriate argument. These quantities can be computed via
the co-called limiting or regular adjoint generalized equation introduced in Koč-
vara and Outrata (2004). If S is given by (8), these adjoint generalized equations
involve the respective coderivatives of the normal-cone mapping NΓ(·) that have
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been analyzed for a number of frequently occurring sets Γ, see, e.g., Henrion and
Roemisch (2007), Outrata and Sun (2008) and Henrion, Outrata and Surowiec
(2009). Notice that, since the limiting normal cone to Gph NΓ contains typically
a linear subspace, the respective limiting adjoint generalized equation amounts
to a linear equation, and so it is substantially easier to solve than its regular
counterpart.

For this reason, in the case iii) we mostly put ξ̄ = 0 and compute the
subgradient just like in the case ii). Unfortunately, this means that in some
cases we might provide BT with a false subgradient, which could destroy the
convergence. Despite this possibility, we did not observe such phenomenon in
our numerical examples.

To test the performance of the BT method for MPECs with state constraints
we modify the oligopolistic market example from Murphy, Sherali and Soyster
(1982), see also Outrata, Kočvara and Zowe (1998), Section 12.1.

Example 3 Consider an example of five firms supplying a quantity zi ∈ R+, i =
1, . . . , 5, of some homogeneous product on the market with the inverse demand
function

p(T ) = 5000
1
γ T−

1
γ ,

where γ is a positive parameter termed demand elasticity and T =
∑5

i=1 zi

denotes the total supply.
Let all the production cost functions be in the form

ci(zi) = bizi +
βi

1 + βi

K
−

1
βi

i (zi)
1+βi

βi ,

where bi,Ki and βi, i = 1, . . . , 5, are positive parameters given in Table 1.

Table 1. Parameter specification for the production costs

Firm 1 Firm 2 Firm 3 Firm 4 Firm 5

bi 2 8 6 4 2

Ki 5 5 5 5 5

βi 1.2 1.1 1.0 0.9 0.8

The aim of each firm is then to minimize the loss function

fi(z) = ci(zi) − zip(T ).

Each production cost function is convex and twice continuously differentiable
on some open set containing the feasible set of strategies of a corresponding
player. The inverse demand curve is twice continuously differentiable on int R+,
strictly decreasing, and convex. Observe that the so-called industry revenue curve
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Tp(T ) = 5000
1
γ T

γ−1
γ

is concave on int R+ for γ ≥ 1.

We suppose that the first firm is the so-called market leader, i.e., has a
temporal advantage and is able to decide about this production before the others,
so-called market followers. To be consistent with the notation from the first part
of the paper, put

x :=z1

y :=(z2, . . . , z5).

The leader thus aims to solve the following MPEC

minimize f1(x, y)

subject to

0 ∈ F (x, y) +NR
4
+
(y)

x ∈ R+,

(19)

where

F (x, y) :=




∇y1f2(x, y)
∇y2f3(x, y)
∇y3f4(x, y)
∇y4f5(x, y)


 .

We assume that the leader is producing some positive production quantity. By
Outrata, Kočvara and Zowe (1998), Lemma 12.2, the partial Jacobian ∇yF (x, y)
is positive definite at each feasible pair (x, y). This implies that S is single-valued
and the ImP-hypothesis holds true at each feasible pair (x, y).

The first section of Table 2 shows the productions and profits of all firms for
γ = 1.0. Now, suppose there is a state constraint in the form yi ≤ N, i = 1, . . . , 4,
imposed on the followers. Applying the BT code to the respective penalized
problem, the second and third section of Table 2 show the productions and profits
for N = 45 and N = 40, respectively. In the last section we suggest, additionally
to N = 40, to impose also an upper production bound M = 150 on the leader.
In this case, the penalty term fails to vanish at the optimal point despite the
calmness of the solution map simply due to the fact that this MPEC is infeasible.
This situation can be easily detected: for any choice of penalty parameter R, the
penalized distance at the optimal point remains the same.

We point out that the penalty parameter R, for which the penalty term be-
comes exact, is not a priori known in most examples. Table 3 then illustrates
the dependence of the results on the choice of R for N = 40.

Interestingly, we were able to obtain the same results also with the Euclidean
norm replaced by the sum norm. Hence the differentiability of the distance
function in out-of-set points does not seem to be of a great importance.
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Table 2. Productions and profits

Firm 1 Firm 2 Firm 3 Firm 4 Firm 5

No state constraints

Production 99.5329 44.3804 45.8893 44.2806 40.2357

Profit 958.6348 284.6830 350.5039 393.2798 410.5312

N = 45, R = 15

Production 108.1305 43.2615 45.0000 43.5921 39.7215

Profit 952.5061 266.1045 331.9174 375.8856 395.1587

Penalized distance 0

N = 40, R = 100

Production 157.6612 36.9306 40.0000 39.7606 36.8917

Profit 691.8176 178.6969 242.5824 291.1216 319.4797

Penalized distance 1.5857 · 10
−6

N = 40, M = 150

Production 150.000 37.8935 40.7579 40.3377 37.3149

Profit 673.1138 190.2799 254.6497 302.7105 329.9166

Penalized distance 0.8297

Table 3. Productions and profits: N = 40

Firm 1 Firm 2 Firm 3 Firm 4 Firm 5

R = 10

Production 110.1426 43.0002 44.7926 43.4319 39.6022

Profit 883.1784 261.9189 327.7146 371.9429 391.6679

Penalized distance 6.6143

R = 50

Production 139.4624 39.2288 41.8101 41.1409 37.9056

Profit 723.5776 207.2848 277.2178 319.4936 344.9748

Penalized distance 2.1397

R = 100

Production 157.6612 36.9306 40.0000 39.7606 36.8917

Profit 691.8176 178.6969 242.5824 291.1216 319.4797

Penalized distance 1.5857 · 10
−6

Conclusion

We have studied the influence of the ImP-hypothesis on a class of MPECs.
It has been proved that this hypothesis does not lead to sharper optimality
conditions, but enables us to simplify the respective constraint qualification.
Then we have considered equilibria governed by strongly regular variational
inequalities and derived a new variant of Mordukhovich stationarity conditions.
It is well-suited to the case when the constraint set of the variational inequality
is given by linearly dependent inequalities. Finally, we have shown the ability
of a numerical method from Outrata (1990) and Outrata, Kočvara and Zowe
(1998) to solve also some MPECs with state constraints.
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